Machine Learning: Sudoku Benchmark - XLA
Go back to listContext
XLA aka Accelerated Linear Algebra, is a specific compiler for linear algebra that can accelerate TensorFlow models with potentially no source code changes.
Observaton: Does XLA improve our performance ?
We run training and inference with and without XLA enabled.
{
"configuration": {
"chart": {
"type": "spline",
"polar": false,
"zoomType": "",
"options3d": {},
"height": 500,
"width": null,
"margin": null,
"inverted": false,
"zooming": {}
},
"credits": {
"enabled": false
},
"title": {
"text": ""
},
"colorAxis": null,
"subtitle": {
"text": ""
},
"xAxis": {
"title": {
"text": "Enable xla"
},
"categories": [
false,
true
]
},
"yAxis": [
{
"gridLineWidth": 0,
"title": {
"text": "Inference score",
"style": {
"color": "#4BAF50",
"font-size": "20px"
}
},
"opposite": true,
"floor": 0,
"ceiling": 1,
"softMin": 0,
"softMax": 1,
"labels": {
"style": {
"color": "#4BAF50"
}
}
},
{
"gridLineWidth": 0,
"title": {
"text": "Loss",
"style": {
"color": "#8A5CA0",
"font-size": "20px"
}
},
"opposite": true,
"floor": 0,
"softMin": 0,
"labels": {
"style": {
"color": "#8A5CA0"
}
}
},
{
"title": {
"text": "Train speed",
"style": {
"color": "#333333",
"font-size": "20px"
}
},
"floor": 0,
"softMin": 0,
"labels": {
"style": {
"color": "#333333"
}
}
}
],
"zAxis": {
"title": {
"text": ""
}
},
"plotOptions": {
"series": {
"dataLabels": {
"enabled": false,
"format": "{series.name}",
"distance": 30,
"align": "left",
"inside": true,
"allowOverlap": false,
"style": {
"fontSize": "17px"
}
},
"showInLegend": null,
"turboThreshold": 1000,
"stacking": "",
"groupPadding": 0,
"centerInCategory": false,
"findNearestPointBy": "x"
}
},
"navigator": {
"enabled": false
},
"scrollbar": {
"enabled": false
},
"rangeSelector": {
"enabled": false,
"inputEnabled": false
},
"legend": {
"enabled": true,
"maxHeight": null,
"align": "center",
"verticalAlign": "bottom",
"layout": "horizontal",
"width": null,
"margin": 12,
"reversed": false
},
"series": [
{
"name": "Inference score",
"data": [
0.9975,
0.9986
],
"lineWidth": 5,
"color": "#4BAF50",
"marker": {
"enabled": 0
}
},
{
"name": "Loss",
"data": [
0.30316199362277985,
0.30791865587234496
],
"yAxis": 1,
"lineWidth": 5,
"color": "#8A5CA0",
"marker": {
"radius": 5
}
},
{
"name": "Train speed",
"data": [
39955.31249984917,
38571.15468764459
],
"yAxis": 2,
"lineWidth": 5,
"color": "#333333",
"marker": {
"enabled": 0
}
}
],
"drilldown": {},
"tooltip": {
"enabled": true,
"useHTML": false,
"format": null,
"headerFormat": "",
"pointFormat": "<span style=\"color:{series.color}\">{series.name}</span>: <b>{point.y:.2f}</b><br/>",
"footerFormat": "",
"shared": true,
"outside": false,
"valueDecimals": null,
"split": false
},
"annotations": null
},
"hc_type": "chart",
"id": "266194148705374637732748214791065288602"
}
Assertions
- XLA brings no significant change in any metric.